This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
<iframe width="560" height="315" src="https://www.uttv.ee/embed?id=17138" frameborder="0" allowfullscreen></iframe>
Given by Konstantin Tretyakov
Brief summary: Recap on algebra and geometry. Maximal margin classifiers. Reformulation as a quadratic programming problem. Primal and dual forms. SVM as an example of a regularized learning problem. Hinge loss as an example of a surrogate loss function.
Slides: (pdf)
Literature:
Cristianini and Shawe-Taylor: An Introduction to Support Vector Machines pages 93 - 112
Schölkopf and Smola: Learning with Kernels pages 189 - 215
Two ways to minimise objective function hard and soft clustering. Soft clustering as expectation-maximisation. Robust Gaussian mixture models. Mixtures of Bernoulli distributions. Logistic regression and linear discriminant analysis.
Parema kasutuskogemuse tagamiseks kasutame küpsiseid. UTTV veeb ei töötle ega kogu isikuandmeid. UTTV kasutab Google Analyticsi teenust. Loe lähemalt andmekaitsetingimustest.